Мочекаменная болезнь (МКБ) – древнейшее и широко распространенное заболевание, патогенез которого доподлинно не изучен [1-4]. В настоящее время описаны три его механизма: появление камней над «белыми» интерстициальными гидроксиапатитными бляшками или бляшками Рэндалла, их образование над «заглушками» (пробками) протоков Беллини и постепенный рост уролита в «свободном» растворе из осадка мочи [5]. Золотым стандартом лечения крупных и коралловидных конкрементов остается перкутанная нефролитотрипсия, во время которой, порой, вместо камня в лоханке обнаруживается субстанция белого цвета, принимаемая за фибрин или гной. Неоднократно столкнувшись с подобной ситуацией при удалении «мягких», плотностью 300-400 HU, уролитов, мы провели физикохимический анализ этого субстрата. Результаты позволили взглянуть на «матричную модель» их формирования по-новому и предположить, что первичным звеном является образование полимерного белкового каркаса.
Цель исследования – изучение механизма патогенеза мочекаменной болезни.
За последние пять лет феномен «органической матрицы» мы наблюдали десять раз. У всех этих больных, по данным предоперационной компьютерной томографии, определялись крупные (К3-К4) коралловидные камни плотностью до 450 HU. Но вместо них во время операции в полостной системе обнаруживались тягучая слизь и упругая субстанция белого цвета, консистенции «мягкого пластилина», легко расслаивающаяся на части при попытке удаления захватом (рис. 1, 2).
Забрать этот материал на анализ в чистом виде, без примеси крови и промывной жидкости, позволила технология лапароскопической пиелолитотомии. Оформленная часть субстанции была помещена в стерильный физиологический раствор при температуре 3ºС и доставлена для изучения в лабораторию Научноисследовательского института химии при Нижегородском государственном университете им. Н.И. Лобачевского. Исследование проводили следующим образом. Материал разделили на две части. Первую (образец 1) неоднократно промывали в дистиллированной воде, а затем сушили лиофильно до постоянного веса. Изучение поверхности этого образца проводили на сканирующем электронном микроскопе JSM-IT300 (JEOL Ltd, Japan) с диаметром электронного зонда до 5 нм (рабочее напряжение 20 кВ), с использованием детекторов низкоэнергетичных вторичных электронов и обратно-рассеянных электронов в режиме низкого вакуума для снятия заряда. Элементный анализ осуществляли на элементном анализаторе Vario EL Cube и с помощью рентгеновского микрозондового анализатора (РМА) с детектором X-MaxN 20 (Oxford Instruments, UK). Органическая и минеральная составляющие образца 1 определялись по результатам его сжигания с последующим сопоставлением обнаруженных химических элементов с эталонными значениями для белков, углеводов и сиаловой кислоты.
Второй образец оставили в 3%-ном водном растворе уксусной кислоты при комнатной температуре на сутки – растворилось около 70% (образец 2-1, растворенный за 24 часа). Оставшийся осадок вновь поместили в такой же кислотный раствор при той же температуре, но уже на 3 недели. А затем, этапно фильтруя, держали по 14 дней при 500С и 700С соответственно (образец 2-2 длительного растворения). То, что осталось после растворения, процедили и подвергли анализу. Mолекулярно-массовые характеристики определяли методом гель проникающей хроматографии (ГПХ) с применением высокоэффективного жидкостного хроматографа (Shimadzu CTO20A/20AC) с программным модулем LC-Solutions-GPC. Разделение проводили с применением колонки с диаметром пор 5 мкм (Tosoh Bioscience TSK gel G3000SWxl). В качестве детектора применяли низкотемпературный светорассеивающий детектор ELSD-LT II, элюентом служил 0,5 М раствор уксусной кислоты, скорость потока 0,8 мл/мин, для калибровки использовали узкодисперсные образцы декстрана с диапазоном молекулярных масс (ММ) 1-410 кДа (Fluca).
Методом сканирующей электронной микроскопии (СЭМ) установлено, что губка субстанции имеет полимерное строение (рис. 3). При этом отмечены четкие сетчатые очертания каркаса из поперечно связанных коллагеновых фибрилл. Анализ соотношения органической и минеральной составляющих образца 1 верифицировал его природу: это гликопротеин (рис. 4). Результаты исследования молекулярно-массовых характеристик методом ГПХ показали, что 59% образца 2-1, растворившегося за 24 часа, соответствовали ММ 167 кДа, а 35% – 21 кДа. В свою очередь, образец 2-2 длительного растворения имел гораздо более «тяжелые» цепочки: в 87% его молекулярная масса составляла 307 кДа (таб. 1).
Таким образом, субстанция, имитировавшая коралловидный камень при МСКТ и извлеченная во время пиелолитотомии, имела фибриллярное строение с сетчатой структурой, являясь, по своей сути, полимером. Данные элементного анализа позволяют отнести составляющие ее высокомолекулярные компоненты к гликопротеинам (по сравнению с белками, за счет полисахаридов, в них содержится немного больше кислорода и водорода). Выявленные значения молекулярной массы подтверждают содержание в субстанции высокомолекулярных соединений (табл. 1).
Таблица 1. Данные ГПХ растворившейся части образца 2
Table 1. GPC data of the dissolved part of the sample 2
Среднечисловая молекулярная масса Average molecular weight Mn, кДа | Средневесовая молекулярная масса The average weight of the molecular weight Mw, кДа | Индекс полидисперсности Polydispersity index PDI (Mw/Mn) | Количество в образце, % Quantity in the sample, % |
---|---|---|---|
Для образца 2-1, растворившегося за 24 ч For sample 2-1 dissolved in 24 hours |
|||
141,7 | 167,2 | 1,18 | 59 |
21,0 | 21,09 | 1,00 | 35 |
130,6 | 131,2 | 1,00 | 2 |
0,3 | 0,5 | 1,61 | 5 |
Для образца 2-2 после длительного растворения For sample 2-2 after prolonged dissolution |
|||
259,5 | 307,3 | 1,18 | 87 |
22,2 | 222,0 | 1,00 | 9 |
13,1 | 131,2 | 1,00 | 4 |
Истинные причины развития МКБ пока не раскрыты, впрочем, независимо от особенностей возникновения, все конкременты содержат органический матрикс. Пусть его доля и составляет лишь 2-3%, но именно он является каркасом для формирования камня. Оставшаяся бóльшая часть (97-98%) приходится на минеральную составляющую, обеспечивающую послойное внешнее солевое покрытие [6]. Исследования, проведенные в этой области, говорят о том, что основой органической части камней являются белки Тамма-Хорсфала (уромодулин), S100A8 и S100A9, альбумин и остеопонтин [7, 8]. Они отвечают за различные функции. Например, S100A8 и S100A9, образующие при соединении друг с другом димер под названием кальпротектин, участвуют в реакции воспаления, регулируют обмен кальция, магния, цинка, других микрои макроэлементов, а также принимают участие в иммунном ответе [9]. Белок Тамма-Хорсфала, или уромодулин, – основной гликопротеин мочи, имеющий множество функций, главной из которых является поглощение кальция в дистальном извитом канальце (снижая при этом риск гиперкальцурии и образования камней в почках). Тем не менее, при определенных условиях он может переходить в патологическую форму и полимеризироваться в длинные цепи, достигая очень больших размеров [10].
В 2021 г. Y. Yang и соавт. опубликовали результаты анализа протеинового состава мочевых камней. Несмотря на то, что авторы исследовали органическую составляющую в «зрелых», уже сформировавшихся конкрементах, а мы смогли изучить саму предтечу, «матрицу» зарождающегося камня, в статье приведен спектр и молекулярные массы обнаруженных белков [8]. Сопоставив по молекулярной массе собственные результаты с данными китайских коллег, мы верифицировали белки, входящие в состав нашего образца (табл. 2).
Как видно из таблицы 2, более половины высокомолекулярных соединений в исследованной нами субстанции относятся к белкам, которые тем или иным образом участвуют в процессе воспаления: миелопероксидаза и иммуноглобулин. Кальпротектин (S100A8\ S100A9) вместе с транспортными белками (ретинолсвязывающим и эозинофильным катионным) совпадает по значению ММ с 35% выявленных макромолекул. Оставшаяся часть (2,3%) полимерных молекул с низкими молекулярными массами может быть отнесена к белкам, выполняющим транспортную функцию. Гидролизаты – это фрагменты деструктировавших белков в результате частичного кислотного гидролиза в присутствии уксусной кислоты. Однако молекулярно-массовые характеристики образца 2-2 после длительного растворения при различных условиях говорят о содержании в субстрате сетчатого высокомолекулярного белка, способного к полимеризации и построению длинных «тяжелых» цепочек. Подобное образование больших гелеподобных частиц (как ядра кристаллизации) вследствие полимеризации характерно для белка Тамма-Хорсфалла [11-13]. Молекулярная масса нашего образца совпала с ММ последнего.
Таблица 2. Процентное соотношение идентифицированных белков в части субстрата [8]
Table 2. The percentage of identified proteins in the dissolved part of the substrate [8]
Белок уролитов Urolith protein |
ММ кДа |
Содержание белков с соответствующей ММ в образце 2-1 ( %) The protein content with the corresponding MM in the sample is 2-1 (%) |
---|---|---|
Миелопероксидаза Myeloperoxidase |
161 | 59% |
Иммуноглобулин Immunoglobulin |
150-170 | |
Кальпротектин (S100A8/S100A9) Calprotectin |
24 | 35% |
Ретинолсвязывающий Retinol binding |
21-22 | |
Эозинофильный катионный белок Eosinophilic cationic protein |
18-21 | |
Бетта-2-микроглобулин Beta-2-microglobulin |
12 | 2% |
Витамин К-зависимый Vitamin K-dependent |
10,6 | |
Бета-субъединица гемоглобина The beta subunit of hemoglobin |
16 | |
Лизоцим С Lysozyme C |
14 | |
Сывороточный амилоид Р-компонент Serum Amyloid P component |
11-14 | |
Низкомолекулярная фракция (гидролизат белков) Low molecular weight fraction (protein hydrolysate) |
~5 | 4% |
Конечно, остается много неясного. Например, почему очень неплотное вещество белковой структуры выглядит по данным МСКТ как камень плотностью 400 HU (как губчатое вещество костей)? Ответить на этот и другие вопросы поможет проведение дальнейших исследований и новых экспериментов.
Результаты настоящего исследования позволяют предположить, что формирование камней начинается с образования каркаса из полимеризованных белков воспаления, как первичной «матрицы». После чего происходит ее кристаллизация и появление уролита, а за счет минерализации, в зависимости от солевого состава и кислотности мочи, формируется конкремент той или иной плотности.
Прикрепленный файл | Размер |
---|---|
Скачать статью | 1.53 Мб |