Перейти к основному содержанию
Номер №3, 2025
Первый анализ приверженности лабораторий в Российской Федерации Шестому изданию Лабораторного Руководства ВОЗ по исследованию и обработке эякулята человека
Номер №2, 2025
Коэффициент опорожнения мочевого пузыря как прогностический маркер хронической болезни почек у мужчин с гиперплазией предстательной железы
Номер №1, 2025
Влияние тестостерон-заместительной терапии на симптомы нижних мочевых путей (СНМП) у мужчин
Номер №4, 2024
Структура повреждений органов мочеполовой системы в современном вооруженном конфликте
Номер №3, 2024
Экономическая эффективность лечения недержания мочи в условиях стационара кратковременного пребывания
Номер №2, 2024
Комплексные средства для коррекции уровня рН мочи при метафилактике мочекаменной болезни
Номер №1, 2024
Современное оперативное лечение пациентов с камнями почек размером до 2 см и сопутствующей ИБС
Номер №4, 2023
Возможности улучшения терапевтической активности препаратов бактериофагов Урологические осложнения трансплантированной почки
Номер №3, 2023
Нормативно-правовые возможности проведения метафилактики мочекаменной болезни в Российской Федерации Бессимптомная бактериурия у беременных: всегда ли оправдана антибиотикотерапия?
Номер №2, 2023

Частота и характер симптомов нарушения функции нижних мочевых путей у лиц старше 40 лет 

Посткоитальный цистит как причина сексуальной дисфункции у женщин

Номер №1, 2023
Создание пункционной насадки для конвексного УЗ-датчика с использованием технологии 3D-печати Фьюжн-биопсия ПЖ. Диагностическая ценность в сравнении со стандартной биопсией
Номер №4, 2022
Хирургия опухолевых тромбов нижней полой вены Безрентгеновская контактная уретеролитоторипсия при камнях мочеточника
Номер №3, 2022
Брахитерапия рака предстательной железы и иммунный ответ Факторы риска нефролитиаза после радикальной цистэктомии с кишечной пластикой мочевого пузыря
Номер №2, 2022
Заболеваемость мочекаменной болезнью в Российской Федерации с 2005 по 2020 гг. Мочекаменная болезнь и риск инфаркта миокарда и инсульта
Номер №1, 2022
Современный взгляд на скрининг мочекаменной болезни Наследственный фактор метафилактики мочекаменной болезни Лечение бесплодия, ассоциированного с высоким уровнем фрагментации ДНК сперматозоидов
Номер №4, 2021
COVID-19 ассоциированный инкрустирующий цистит Эндоскопическая коррекция пузырно-мочеточникового рефлюкса у детей: дифференцированный выбор метода, материала и его дозирования
Номер №3, 2021
Искусственный интеллект в онкоурологии Миниперкутанная нефролитотомия без катетеризации мочеточника. Сравнение со стандартной методикой
Номер №1, 2021
Эпидемиологическое исследование распространенности цистита у женщин Воронежской области Врожденные аномалии полового члена: мировые и отечественные данные
Номер №5, 2020
Изолированная травма почки: международные рекомендации и московские стандарты
Номер №3, 2020
Эпидемиология нейрогенных нарушений мочеиспускания. Результаты лечения больных раком предстательной железы высокого риска: мультицентровой анализ
Номер №2, 2020
COVID-19: влияние на урологическую службу Российской Федерации Мочеполовая система и Covid-19: некоторые аспекты
Номер №1, 2020
Дистанционное образование в урологии. Опыт 2012-2019 гг Оказание стационарной помощи пациентам урологического профиля в условиях пандемии COVID-19
Номер №4, 2019
Мужское бесплодие в Российской Федерации: статистические данные за 2000-2018 гг Оценка эффективности тренировок мышц промежности в восстановлении эректильной функции
Номер №3, 2019
Эпидемиология мочекаменной болезни в Пермском крае: результаты 30-летнего изучения Медико-экономическое обоснование применения современных методов лечения мочекаменной болезни
Номер №4, 2018
Заболеваемость МКБ в Российской Федерации (2005-2016 гг) Скрининг РПЖ: современное представление и организация Первично-множественный рак переходноклеточного эпителия Андрогенный скрининг у мужчин старше 50 лет
Номер №3, 2018
Роль стволовых клеток в лечении недержания мочи Перкутанная нефролитотрипсия при инфицированной моче Протезирование яичка в детском и подростковом возрасте: результаты мультицентрового исследования Преждевременная эякуляция – современное состояние проблемы
Номер №2, 2018
Альтернативные методы лечения локализованного рака предстательной железы Частичное удвоение уретры: парауретральный ход Сравнительный обзор одноразовых гибких уретеронефроскопов
Номер №1, 2018
Распространенность симптомов нарушения функции нижних мочевых путей у мужчин по результатам популяционного исследования Модель пациент-центрированной системы организации медицинской помощи...
Номер №4, 2017
Прогнозирование развития эректильной дисфункции и сердечно-сосудистых заболеваний Прогностические факторы выживаемости больных при раке предстательной железы
Номер №3, 2017
Рекомендации по лечению рака предстательной железы с помощью высокомощностной внутритканевой лучевой терапии (брахитерапии). Экспертное совещание
Номер №2, 2017

Радиоизотопная лимфосцинтиграфия при РПЖ
Метаболические факторы риска и формирование мочевых камней
Ампутация мочеточника при выполнении контактной уретеролитотрипсии

Номер №1, 2017
Принципы «Медицины 4П» в организации медицинской помощи на примере урологических заболеваний Изменения электролитного состава мочи под действием гипохлорита натрия. Возможность уменьшения риска рецидива нефролитиаза
Номер №4, 2016
Предварительные результаты многоцентрового исследования РПЖ Анализ оказания специализированной медицинской помощи пациентам с макрогематурией, почечной коликой.
Номер №2, 2016
Медицинская помощь пациентам с острой задержкой мочеиспускания Прогностическое значение истинного кастрационного уровня тестостерона..
Номер №1, 2016
Предикторы гиподиагностики рака мочевого пузыря Сохранение фертильности у больных опухолями яичек Цитокиновый статус больных с хроническим циститом
Номер №4, 2015

Современная демографическая ситуация в России
Определение мутаций генов FGFR3 и PIK3CA в ДНК
из осадка мочи у больных раком мочевого пузыря

Номер №3, 2015
Нейроэндокринная дифференцировка при раке предстательной железы Роль вирусов в канцерогенезе рака мочевого пузыр..
Номер №2, 2015
Клинико-экономическая оценка скрининга РПЖ Комбинация РСАЗ TMPRSS2-ERG в диагностике РПЖ: первый опыт Рекомендации по лечению РПЖ методом низкодозной ...
Номер №1, 2015
Роль дистанционного образования в повышении уровня специалистов первичного звена здравоохранения. Сравнительный анализ онкологических результатов ..
Номер №4, 2014
Организация работы по улучшению клинических и экономических результатов медицинской помощи при раке предстательной железы Сравнение результатов открытой, лапароскопической и робот-ассистированной нефрэктомии при раке почки Сравнительный анализ функциональных результатов позадилонной ..
Номер №3, 2014
Медико-экономические аспекты комплексной этапной стандартизированной программы диагностики и лечения доброкачественной гиперплазии предстательной железы
Номер №2, 2014
Уронефрологическая заболеваемость и смертность в РФ за 2002-2012 Андрогены и ишемия в патогенезе ДГПЖ РСА3: первые результаты
Номер №1, 2014
Стандартизированная программа диагностики и лечения ДГПЖ Хромограмма-А сыворотки крови при заболеваниях предстательной ... Задержанная эякуляция
Номер №4, 2013
Дистанционное образование в урологии Брахитерапия РПЖ Эректильная дисфункция и сердечно...
Номер №3, 2013
Заболеваемость МКБ в Иркутской области HIFU-терапия местного рецидива рака... Внепростатические источники простатического...
Номер №2, 2013
Программа "Урология" в Воронежской области Анализ уронефрологической заболеваемости Ожирение и мочекаменная болезнь
Номер №1, 2013
Клинико-экономический анализ оперативного лечения РПЖ Брахитерапия РПЖ: постимплантная дозиметрия и зависимость... Моделирование канцерогенеза предстательной железы
Номер №4, 2012
Урологическая заболеваемость в Нижегородской области Стресс, метаболический синдром и хроническая болезнь почек TVT - 10 лет в России
Номер №3, 2012
Программа «Урология» - модернизация здравоохранения Ишемия мочевого пузыря как причина его дисфункции ... Современные тенденции в эпидемиологии, диагностике ...
Номер №2, 2012
Урологическая заболеваемость в РФ в 2005-2010 годах Трансуретральная энуклеация предстательной железы (TUEB) Влияние стандартизации методов определения ПСА на ...
Номер №1, 2012
Инвалидность вследствие заболеваний мочеполовой системы в РA Стандартизация терминов, методов получения и представления ... Эректильная дисфункция у пациентов с ...
Номер №4, 2011
Уронефрологическая заболеваемость детей в Российской Федерации Структура урологических заболеваний в популяции ... Стандартизированный подход к ведению больных с МКБ
Номер №2-3, 2011
Малоинвазивные технологии лечения рака предстательной железы и почки
Номер №1, 2011
Урологическая заболеваемость в РФ в 2002-2009 годах Сравнительный анализ клинических и экономических... Клинико-статистическая классификация андрологических ...
Номер №4, 2010
Оперативное лечение рака предстательной железы Влияние фетальных костномозговых мезенхимальных ... Патогенное минералообразование в почках ...
Номер №3, 2010
Анализ некоторых аспектов обеспечения заместительной ... Российская система последипломного образования Образовательная программа подготовки резидентов
Номер №2, 2010
Уронефрологическая заболеваемость детей в РФ Первые результаты целевой программы диагностики ... Оценка мужского репродуктивного здоровья молодежи ...
Номер №1, 2010
Анализ уронефрологической заболеваемости в РФ Объем выборки для популяционного изучения общей ... Морфологические изменения в ткани предстательной ...
Номер №1, 2009
Николай Алексеевич Лопаткин - основатель НИИ урологии Фундаментальные исследования в НИИ урологии 30 лет НИИ Урологии
Eksperimental'naya i klinicheskaya urologiya

Особенности профиля соматических мутаций и функционирования внутриклеточных сигнальных путей на различных стадиях рака мочевого пузыря и их значение для терапии

Номер №1, 2020 - стр. 42-51
DOI: 10.29188/2222-8543-2020-12-1-42-51
Для цитирования: Сергиенко С.А., Михайленко Д.С., Сафронова Н.Ю., Ефремов Г.Д., Каприн А.Д., Алексеев Б.Я. Особенности про- филя соматических мутаций и функционирования внутриклеточных сигнальных путей на различных стадиях рака мочевого пузыря и их значение для терапии. Экспериментальная и клиническая урология 2020;(1):42-51
Сергиенко С.А. Михайленко Д.С. Сафронова Н.Ю. Ефремов Г.Д. Каприн А.Д. Алексеев Б.Я.
Сведения об авторах:
  • Сергиенко С.А. – младший научный сотрудник отдела онкологии НИИ урологии и интервенционной радиологии им. Н.А. Лопаткина – филиал ФГБУ «НМИЦ радиологии» Минздрава России, AuthorID: 586554
  • Михайленко Д.С. – к.м.н., ведущий научный сотрудник научно-лабораторного отдела НИИ урологии и интервенционной радиологии им. Н.А. Лопаткина – филиал ФГБУ «НМИЦ радиологии» Минздрава России, AuthorID: 175147
  • Сафронова Н.Ю. – младший научный сотрудник научно-лабораторного отдела НИИ урологии и интервенционной радиологии им. Н.А. Лопаткина – филиал ФГБУ «НМИЦ радиологии» Минздрава России, AuthorID: 698120
  • Ефремов Г.Д. – к.м.н., заведующий научно-лабораторным отделом НИИ урологии и интервенционной радиологии им. Н.А. Лопаткина – филиал ФГБУ «НМИЦ радиологии» Минздрава России, AuthorID: 637962
  • Каприн А.Д. – д.м.н., профессор, академик РАН, генеральный директор ФГБУ «НМИЦ радиологии» Минздрава России, AuthorID: 96775
  • Алексеев Б.Я. – д.м.н., профессор, заместитель генерального директора по науке ФГБУ «НМИЦ радиологии» Минздрава России, AuthorID: 651796
6522
Скачать PDF

В России рак мочевого пузыря (РМП) занимает 13 место по распространенности среди всех онкологических заболеваний и 9 место – среди онкологических заболеваний у мужчин [1]. В мире заболеваемость РМП в среднем выше, чем в России, и занимает 11 место среди прочих онкологических патологий у обоих полов и 7 место – у мужчин [2]. В 75% случаев выявляется немышечно-инвазивный рак мочевого пузыря (НМРМП) на стадии Та, Т1, карцинома in situ (CIS), у оставшихся 25% диагностируется стадия Т2 и выше, а также метастатическая форма заболевания [3]. Наряду с доказанными факторами риска развития РМП (курение, работа на производстве лакокрасочных материалов, красителей, топлива) существенный вклад в возникновение и развитие этого заболевания вносят генетические факторы. С точки зрения молекулярного патогенеза РМП является в значительной мере гетерогенным заболеванием, что подразумевает не только различное клиническое течение опухолевого процесса, но и ответ на проводимую терапию. Полученные на настоящий момент данные уже позволяют разделять несколько подтипов РМП на основании иммуногистохимических и морфологических признаков [4]. Вместе с тем, все больший интерес представляют исследования молекулярногенетического профиля опухоли, который лежит в основе ее фенотипических (в том числе, патоморфологических) признаков, его значения для оценки прогноза РМП и персонифицированного лечения.

МАТЕРИАЛЫ И МЕТОДЫ

При написании обзора были использованы данные о генетических нарушениях при РМП и диагностических тест-системах, опубликованные в базах www.ncbi.nlm.nih.gov/pubmed/" target="_blank">PubMed, Научной электронной библиотеки Elibrary.ru, сайтах www.roou.ru/" target="_blank">Российского общества онкоурологов  и Европейской ассоциации урологов . Поиск в базах данных проводили по ключевым словам «gene», «bladder cancer», «mutation» и «diagnostic kit». На первом этапе были найдены 108 источников не старше 5 лет, которые имели отношение к теме обзора. Из них были исключены тезисы конференций, короткие сообщения, дублирующиеся публикации. После чего, исходя из актуальности данных, достоверности источников, импакт-факторов журналов и последовательности изложения материала в рукописи, непосредственно для цитирования в обзоре были отобраны 40 статей в научных международных рецензируемых журналах и одно руководство.

ЧАСТО МУТИРУЮЩИЕ ГЕНЫ ПРИ РАКЕ МОЧЕВОГО ПУЗЫРЯ

На цитогенетическом уровне РМП характеризуется хромосомными аберрациями, которые представлены анеуплоидиями, делециями и инсерциями. Среди них можно упомянуть часто встречающуюся делецию 9 хромосомы, которая происходит на ранних стадиях развития уротелиальной карциномы [5]. Однако большинство описанных при РМП хромосомных аберраций не имеют прогностического значения при их определении рутинными цитогенетическими методами. Больший интерес представляет профиль точковых мутаций, которые возникают в онкогенах и генах-супрессорах, отражают процесс формирования клона злокачественных клеток РМП и прогрессию заболевания. Данные, опубликованные в международной базе данных The Сancer Genome Atlas (TCGA), продемонстрировали высокую частоту встречаемости мутаций при РМП: в среднем 8,2 на 1 млн. пар нуклеотидов [6]. Однако большинство мутаций не имеют каких-либо функциональных последствий. Чаще всего при соматических мутациях преобладает переход C:G→T:A, что в свою очередь характерно для мутаций, связанных с активностью цитидиндеаминаз APOBEC. В частности, данный механизм реализуется при возникновении точковых мутации FGFR3. Ассоциированный с экспрессией APOBEC мутационный профиль прослеживается также и при мутациях других генов, что позволяет судить о ее значительной роли в мутагенезе при РМП [7,8]. Если рассматривать частоту встречаемости мутаций в опухоли, то наиболее актуальными при РМП, в том числе, с точки зрения нарушения функции ключевых внутриклеточных сигнальных путей, контролирующих пролиферацию, являются мутации генов TP53, FGFR3, CDKN2A, PIK3CA, TERT и RB1.

Мутации гена TP53 Ген TP53 расположен у человека на коротком плече 17 хромосомы (17p13.1) и кодирует белок, негативно регулирующий клеточный цикл и апоптоз клеток. По своим характеристикам ген ТР53 представляет собой типичный ген–супрессор опухолевого роста, инактивируемый в злокачественных опухолях по двухударной модели Кнадсена. Точковые мутации TP53 могут быть представлены миссенс-мутациями, небольшими делециями или инсерциями, нонсенс-мутациями, а также протяженными делециями [9].

Мутации гена FGFR3

Ген FGFR3 кодирует рецептор для фактора роста фибробластов 3-го типа, локализован на коротком плече 4 хромосомы в области 4р16.3, кодирует одноименный трансмембранный белок. Белки этого семейства играют важную роль в клеточной пролиферации и дифференцировке, включая позитивную регуляцию клеточного роста, онтогенез и васкуляризацию различных типов тканей [10]. Будучи трансмембранным рецептором, FGFR3 содержит лиганд-связывающий, трансмембранный и киназный домены. При канцерогенезе РМП точковые мутации затрагивают, в основном, два последних домена и представлены активирующими миссенс-мутациями. Наиболее частые из них изменяют кодоны 248 и 249, что в итоге приводит к образованию дисульфидных мостиков и, как следствие, димеризации и конститутивной активации рецепторов. Меньшая доля мутаций приходится на киназный домен, где миссенс-мутации также переводят рецептор в перманентно активное состояние. Отметим, что речь идет о соматических мутациях при канцерогенезе спорадического РМП у взрослых, профиль которых существенно отличается от герминальных мутаций в генах семейства FGFR, приводящих к аномалиям развития в детском возрасте [11].

Мутации гена CDKN2A

Ген CDKN2A осуществляет негативную регуляцию клеточной пролиферации, его продуктом является ингибитор циклин-зависимой киназы 2А (р16 по старой номенклатуре). Локализован CDKN2A на коротком плече 9 хромосомы (9р21.3). По своим функциям этот ген относится к генам-супрессорам, инактивируется в опухоли путем метилирования и/или мутаций. Белок p16 в норме связывается с двумя циклин-зависимыми киназами CDK4 и CDK6 и ингибирует их. Также продукт гена CDKN2A действует синэргично с ранее упомянутым опухолевым супрессором ТР53 [12,13]. Инактивирующие мутации могут быть представлены как однонуклеотидными заменами, так и делециями различной протяженности – от нескольких нуклеотидов до хромосомных фрагментов. В случае сочетания делеции CDKN2A с мутацией FGFR3, как правило, оба изменения происходят на начальных этапах развития опухоли [14].

Мутации гена PIK3CA

Ген PIK3CA находится у человека на длинном плече 3 хромосомы (3q26.32), кодирует белок p110α – основную (каталитическую) субъединицу фермента фосфатидилинозитол-3-киназы (PI3K). Как и другие киназы, PI3K фосфорилирует сигнальные молекулы, что запускает серию реакций и трансдукцию сигнала внутрь клеток. Киназа PI3K играет важную роль в регуляции нескольких внутриклеточных сигнальных путей, прежде всего, идущих от тирозинкиназных рецепторов и влияет на клеточную пролиферацию, миграцию и апоптоз [15]. Мутации PIK3CA приводят к конститутивной активации киназной субъединицы PI3K и стимулированию клеточной пролиферации. Чаще всего эти нарушения представлены активирующими миссенс-мутациями в 9 и 20 экзоне. Хотя они и являются драйверными мутациями в патогенезе многих типов опухолей, их влияние на способность клеток к неконтролируемой пролиферации не такое выраженное, как, например, у активирующих мутаций генов тирозинкиназных рецепторов (в том числе, FGFR3). Поэтому они являются лишь частью профиля активирующих точковых мутаций при РМП [16].

Мутации гена TERT

Рассмотренные в предыдущих разделах частые точковые мутации в ключевых онкогенах происходят непосредственно в кодирующих последовательностях генов. Однако такие мутации могут быть обнаружены и в промоторе, в частности, в гене TERT. Этот ген находится на коротком плече 5 хромосомы (5p15.33) и кодирует большую субъединицу фермента теломеразы. Теломераза осуществляет матричный синтез структур, называемых теломерами, которые состоят из повторяющихся участков ДНК и располагаются на концах хромосом. Теломеры защищают хромосомы от деградации во время репликации генома и от аберрантных хромосомных перестроек с негомологичным соединением концов. По мере исчерпания репликативного потенциала клетки, теломеры на концах хромосом становятся короче и клетка может вступить в апоптоз. В норме это происходит со всеми дифференцированными клетками за исключением клеток зародышевой линии, в которых активна теломераза. В большинстве типов клеток иммуногистохимически теломераза либо не обнаруживается, либо имеет место фоновое окрашивание. Гиперэкспрессия теломеразы отмечается во многих опухолевых клетках и рассматривается как существенный этап перехода к бесконтрольному делению. Мутации TERT при РМП представлены, в основном, однонуклеотидными заменами в двух участках промотора, которые создают дополнительные сайты связывания транскрипционных факторов и способствуют экспрессии гена [17,18].

Мутации гена RB1

Ген RB1 находится на длинном плече 13 хромосомы (13q14.2), кодирует одноименный белок – фактор ретинобластомы (назван так по типу опухолей, в которых ген был впервые выделен и охарактеризован). Этот белок является классическим опухолевым супрессором, осуществляющим негативную регуляцию клеточного деления. В норме он ингибирует фактор E2F и препятствует продвижению по клеточному циклу дальше Sстадии. Герминальные мутации RB1 приводят, в основном, к развитию ретинобластомы, тогда как соматические – встречаются во многих типах опухолей и в части случаев РМП, демонстрируя один из наиболее частых видов повреждений генов-супрессоров в канцерогенезе [19,20]. Мутации в перечисленных выше онкогенах и генах-супрессорах приводят к разбалансировке регуляции клеточного деления. Позитивная и негативная регуляция клеточной пролиферации уротелия – сложный многоступенчатый процесс, но в нем выделяют несколько основных сигнальных путей со своими рецепторами и вторичными мессенджерами, активация/ инактивация которых играют ведущую роль в развитии РМП.

НАРУШЕНИЯ ФУНКЦИИ ОСНОВНЫХ СИГНАЛЬНЫХ ПУТЕЙ ПРИ РАКЕ МОЧЕВОГО ПУЗЫРЯ

Путь FGFR3/RAS

Мутация FGFR3 вызывает конститутивную активацию пути RAS/MAPK. Этот путь рассматривают как один из основных механизмов, запускающих пролиферацию уротелиальных клеток. Приблизительно в 10% случаев РМП обнаруживают мутации в генах семейства RAS: HRAS, KRAS и NRAS. Нарушение функции пути RAS/MAPK вследствие мутаций FGFR3 или генов RAS неизменно ассоциировано с высокой пролиферативной активностью опухолей. Мутация FGFR3 встречается примерно в 80% НМРМП. Для этих опухолей характерны частые рецидивы, немышечно-инвазивный характер роста и благоприятный прогноз. Встречаемость мутаций существенно ниже при мышечно-инвазивном РМП (МИРМП), составляя 10 – 20% случаев [20-23].

Путь PIK3/AKT/MTOR

Путь PIK3/AKT/MTOR также регулирует скорость деления клеток и условно берет начало от киназы PIK3. В свою очередь, эта киназа активируется под действием рецепторных тирозинкиназ, таких как ERBB2, ERBB3 и FGFR3. Мутация гена рецептора эпидермального фактора роста 2-го типа ERBB2 встречается в 12% случаев МИРМП. Делеция или пониженная экспрессия PTEN, который является негативным регулятором пути PIK3/AKT/MTOR, наблюдается во многих случаях МИРМП, тогда как нарушение функции генов AKT1, TSC1 и других, занимающих нижележащие позиции в пути PIK3/AKT/MTOR, встречаются реже [6,24].

Путь TP53/RB1

Данный путь играет важную роль в негативной регуляции клеточного цикла, в отличие от двух описанных выше сигнальных каскадов. Мутации TP53 и RB1 чаще встречаются при инвазии РМП: карциноме in situ и МИРМП. Согласно данным TCGA путь TP53/RB1 инактивирован у 89% больных МИРМП. Показано, что CDKN2A, который непосредственно связан с путем TP53/RB1, подвергается мутациям или протяженным делециям в 7-22% случаев РМП [14,25].Различная вовлеченность мутантных форм онкогенов и генов-супрессоров в ключевые сигнальные пути, регулирующие деление уротелиальных клеток, связана с разными путями молекулярного патогенеза подтипов РМП.

РАЗЛИЧИЯ В ПУТЯХ МОЛЕКУЛЯРНОГО ПАТОГЕНЕЗА ОПУХОЛЕЙ МОЧЕВОГО ПУЗЫРЯ

В общем виде существуют два альтернативных пути молекулярного патогенеза РМП, ассоциированных с неинвазивными и инвазивными формами этого заболевания. В первом случае для неинвазивных опухолей характерна ведущая роль сигнальных путей FGFR3/RAS и PIK3/AKT/MTOR. В частности, обнаруживают мутации FGFR3 и HRAS на стадии предраковых изменений (гиперплазии) и развитии немышечно-инвазивных папиллярных опухолей. Такие первичные опухоли, как правило, склонны к частому рецидивированию, но редко переходят в инвазивную форму, имеют относительно благоприятный прогноз общей выживаемости.

В дальнейшем в части случаев НМРМП возможно приобретение опухолью мутаций PIK3CA, STAG2 и инактивация CDKN2A, что активирует переход опухоли в инвазивную форму и ассоциировано со снижением уровня дифференцировки (G2-3, high-grade). В инвазивных опухолях на первое место выходят множественные хромосомные аберрации вследствие хромотрипсиса, инактивация сигнального пути TP53/RB1. В этом случае предраковым состоянием выступает дисплазия, CIS, а в качестве ранних точковых мутаций – нарушения в гене-супрессоре TP53, а также RB1. Эти опухоли характеризуются агрессивным течением, инвазивным характером роста, склонностью к прогрессированию. В редких случаях возможны сочетанные нарушения всех трех сигнальных путей (рис. 1) [26,27].

Молекулярный патогенез рака мочевого пузыря

Рис. 1. Молекулярный патогенез рака мочевого пузыря
Fig. 1. Molecular pathogenesis of bladder cancer

Наиболее полно охарактеризовать профиль мутаций в опухоли в настоящее время позволяют методы высокопроизводительного секвенирования (NGS – next generation sequencing). Благодаря им можно проводить одновременный анализ панелей из нескольких десятков протяженных интересующих исследователя генов или даже всего опухолевого экзома (совокупности кодирующих последовательностей всех генов). В массив геномных данных также вносят свой вклад результаты исследований на экспрессионных и гибридизационных микрочипах высокой плотности. Эти данные могут быть соотнесены с иммуногистохимическими и морфологическими характеристиками опухоли.

Экспрессионный анализ НМРМП

Транскриптомный анализ 460 случаев НМРМП показал, что эти опухоли можно разделить на три подтипа (классы 1–3), которые значительно различаются по своим клинико-патологическим признакам, включая продолжительность выживаемости без прогрессирования. Исследовано 345 случаев на стадии Та, 112 – Т1 и 3 – Тis. Класс 1 включал наибольшее число Та опухолей, отличался наилучшим прогнозом. Класс 2 чаще был представлен опухолями Т1, низкой дифференцировкой и имел худший прогноз. Отмечен высокий уровень экспрессии KRT20, часто встречающийся при CIS. В целом, экспрессионный спектр 2 класса схож с мышечно-инвазивными опухолями. Мутации, ассоциированные с APOBEC, также ассоциировались с плохим прогнозом. Опухоли класса 3 (n = 129) включали экспрессию KRT5, KRT15 и CD44 и имели промежуточный прогноз среди прочих НМРМП [28,29].

Мутационный и экспрессионный анализ МИРМП

Комплексная молекулярная характеристика МИРМП позволила разделить его на подтипы, связанные с клинико-патологическими признаками. РМП в соответствии с этой новой молекулярной классификацией был разделен на два основных подтипа – люминальный и базальный. D. Lindgren и соавт. впервые идентифицировали базальный подтип МИРМП, который был связан с низкой выживаемостью [30]. W. Choi и соавт. продемонстрировали, что, хотя базальный подтип МИРМП агрессивен в контексте инвазии и метастазирования, он демонстрирует хороший ответ на неоадъювантную химиотерапию (НеоХТ). Он также характеризуется экспрессией белков CK5/6, CD44 и EGFR, но не KRT20 или маркеров дифференцировки уротелия. Эти авторы отметили, что люминальный подтип МИРМП часто имеет мутации FGFR3, экспрессию KRT20 и маркеры дифференцировки уротелия (GATA3, уроплакины и ERBB2, но не CK5/6, CD44, TP63 или EGFR). Они также идентифицировали TP53-подобный подтип МИРМП, который устойчив к НеоХТ [31]. В 2014-2016 гг. данные TCGA использовались для классификации МИРМП на четыре подтипа экспрессии (кластеры I-IV). Кластеры I и II имеют общие черты МИРМП люминального типа, включая дифференцировку уротелиальных клеток и экспрессию GATA3 и FOXA1. Высокие уровни экспрессии семейства E-кадгерина (CDH1) и малой интерферирующей РНК miR-200, которые ингибируют эпителиально-мезенхимальный переход (ЭМП), также обнаружены в кластерах I и II. Кластер I (папиллярный подтип) характеризуется папиллярной морфологией, частыми мутациями FGFR3 и низкими уровнями экспрессии miR-99a-5p и miR100-5p, которые снижают экспрессию FGFR3. Кластер III (базальный/плоскоклеточный подтип) демонстрирует особенности базального типа МИРМП, включая плоскоклеточную дифференцировку и экспрессию маркеров стволовых клеток. Класс IV, соответствующий подтипу, характеризующемуся ЭМП, экспрессирует на низком уровне E-кадгерин и членов семейства miR-200. Что касается ответа на лечение, то кластер TCGA II / TP53-подобный люминальный подтип чувствителен к атезолизумабу (ингибитору PD-L1), но не к НеоХТ. Таким образом, пациенты с опухолями, соответствующими кластеру TCGA II / TP53, могут избежать неоправданной НеоХТ и получить лечение в необходимом объеме цистэктомии или иммунотерапии [32]. Еще в одном классификационном исследовании были выделены четыре кластера мутационных профилей экспрессии Msig1-4 (APOBEC-a и -b, ERCC2 и C>T-at-CpG), которые были ассоциированы с общей выживаемостью. Пациенты с кластером MSig1, APOBEC и высокой мутационной нагрузкой имели пятилетнюю выживаемость 75% по сравнению с кластером MSig2 с самой низкой мутационной нагрузкой (пятилетняя выживаемость в нем составила 22%). Кластер MSig4 был представлен мутациями ERCC2 (49% мутаций против 17% для других MSig). Высокая выживаемость пациентов из первого кластера может быть результатом более эффективного противоопухолевого иммунного ответа на опухоли с высокой мутационной нагрузкой [33].Кластеризация по уровню экспрессии мРНК позволила идентифицировать пять различных молекулярных подтипов РМП (люминально-папиллярный, люминально-инфильтративный, люминальный, базально-плоскоклеточный и нейрональный), которые можно использовать для стратификации пациентов в соответствии с прогнозируемым ответом на лечение (рис. 2). Например, люминально-папиллярный, люминально-инфильтративный и люминальный подтипы экспрессируют люминальные маркеры, включая GATA3, FOXA1, уроплакин и KRT20. В свою очередь, базально-плоскоклеточный подтип характеризуется повышенной экспрессией KRT5, KRT6 и KRT14 и сниженной экспрессией GATA3 и FOXA1. Люминально-папиллярный подтип (35%) характеризуется папиллярной морфологией и имеет лучшие показатели общей выживаемости. Он характеризуется мутациями FGFR3. Этот подтип редко представлен CIS, имеет низкую мутационную нагрузку и уровень метилирования, высокую частоту делеций CDKN2A. Такие опухоли имеют высокую экспрессию miR-200, CDH1 и ERBB2, но низкие уровни экспрессии miR-99a-5p и miR-100-5p. Люминально-инфильтративный подтип (19%) имеет мезенхимальный профиль экспрессии. Эти опухоли характеризуются ЭМП и умеренно экспрессируют маркеры ответа на таргетные иммунопрепараты PD-L1 и CTLA4. Люминальный подтип (6%) имеет высокий уровень экспрессии уроплакинов (UPK1A и UPK2), KRT20 и SNX31. Базально-плоскоклеточный подтип (35%) соответствует ранее определенному базальному подтипу, который связан с плоскоклеточной дифференцировкой и экспрессией кератинов. Этот подтип преимущественно обнаруживается у женщин и имеет высокий уровень экспрессии базальных маркеров (CD44, KRT5, KRT6A и KRT14), маркеров плоскоклеточной дифференцировки (TGM1, DSC3 и PI3) и мишеней для таргетной иммунотерапии PD-L1 и CTLA4. Подтип часто представлен CIS, характеризуется мутациями SHH и TP53. Нейрональный подтип (5%) характеризуется худшим клиническим исходом из всех подтипов. Отмечают повышенную экспрессию генов нейроэндокринной и нейрональной дифференцировки, высокий пролиферативный индекс, большое количество мутаций TP53 и RB1 [6,34,35].

Молекулярные подтипы мышечно-инвазивного рака мочевого пузыря

Рис. 2. Молекулярные подтипы мышечно-инвазивного рака мочевого пузыря
Fig. 2. Molecular subtypes of the muscle-invasive bladder cancer

АКТИВИРУЮЩИЕ МУТАЦИИ И ГИПЕРЭКСПРЕССИРОВАННЫЕ ГЕНЫ КАК ПОТЕНЦИАЛЬНЫЕ МИШЕНИ ДЛЯ ТАРГЕТНЫХ ПРЕПАРАТОВ ПРИ РАКЕ МОЧЕВОГО ПУЗЫРЯ

Накопление экспериментальных данных о мутациях и профилях экспрессии различных подтипов РМП, функционировании внутриклеточных сигнальных путей может иметь значение не только для классификации опухолей, но и для разработки новых противоопухолевых агентов, совершенствовании схем назначения уже существующих таргетных препаратов.

Ингибиторы PD-L1 На поверхности опухолевых клеток экспрессируется лиганд PD-L1, кодируемый геном CD274, который соединяется с рецептором PD-1, кодируемым геном CD279, на поверхности Т-лимфоцита и тем самым предотвращает его цитотоксическое действие на клетки опухоли. В исследовании IMvigor210 у пациентов с метастатическим РМП (n=119), которым была противопоказана полихимиотерапия с цисплатином, в качестве первой линии терапии применялся атезолизумаб. Атезолизумаб является гуманизированным моноклональным антителом G1, который ингибирует PD-L1, разрывая связь с рецептором PD-1. В результате Т-лимфоцит получает возможность выполнять свои функции по элиминации опухолевой клетки. Пациентов разделили на группы, основываясь на уровне экспрессии белка PD-L1 на иммунных клетках (ICindex): IC0 – экспрессия PD-L1 <1%, IC1 – экспрессия PD-L1 ≥1 и <5%, IC2/3 – экспрессия PD-L1 ≥5%. Конечная точка исследования – частота объективных ответов (ОО), согласно критериям RECIST version 1.1. При медиане наблюдения 17,2 мес. была достигнута частота ОО 23% (95% ДИ 16-31) среди всех групп. При разделении на группы были получены следующие результаты: IC0 – 21%, IC1 – 21%, IC1/2/3 – 24%, IC2/3 – 28%. Медиана ОВ составила 15,9 месяцев. На данный момент продолжается клиническое исследование 2 фазы IMvigor211, в котором оценивается эффективность атезолизумаба во второй линии терапии. Пока не достигнута конечная точка общей выживаемости (ОВ) [36].

Ингибиторы PD-1

В исследовании KEYNOTE-012 оценивали эффективность пембролизумаба у пациентов с метастатическим РМП, которым невозможно проведения цисплатин-содержащей химиотерапии. Пембролизумаб является высокоселективным гуманизированным моноклональным иммуноглобулином G4, который ингибирует рецептор PD-1. Механизм действия препарата схож с атезолизумабом: при блокировании рецептора PD-1 разрывается связь с лигандом PDL1/PD-L2. В исследовании принимали участие только пациенты с экспрессией PD-L1 в строме или с экспрессией PD-L1 в ≥1% опухолевых клеткок. Частота объективных ответов составила 24%, а медиана ОВ 9,3 месяцев [37]. В исследовании KEYNOTE-045 оценивалась эффективность пембролизумаба во второй линии терапии. Показано преимущество в ОВ для группы пембролизумаба по сравнению со второй линией химиотерапии. При уровне экспрессии PD-L1 ≥10% ОВ у больных, получавших пембролизумаб, составила 8, а у больных, получавших химиотерапию – 5,2 месяцев [38].

Ингибиторы с-МЕТ

Белок с-МЕТ является продуктом протоонкогена МЕТ, который часто гиперэкспрессируется в разных типах эпителиальных опухолей. с-МЕТ представляет собой тирозинкиназный рецептор, активируемый лигандом HGF (фактором роста гепатоцитов). При активации запускаются внутриклеточные сигнальные пути, направленные на стимуляцию клеточной пролиферации. Показана связь между активацией с-МЕТ и PDGFR. Гиперэкспрессия МЕТ встречается в 60% случаев местнораспространенного и метастатического РМП и характеризуется неблагоприятным прогнозом. Ингибиторы c-MET находятся на разных стадиях клинических испытаний [39].

Ингибиторы FGFR3

Частота мутаций FGFR3 при НМРМП достигает 60% случаев, а при метастатическом РМП составляет лишь 15%. Однако НМРМП представляет основную форму РМП, встречающуюся у 80% пациентов с этим заболеванием, что делает его одной из наиболее перспективных мишеней для разработки таргетных ингибиторов [6, 11]. Кроме того, мутация FGFR3 характерна для люминально-инфильтративного подтипа РМП, который имеет низкую частоту ответа на иммунную терапию. Этот фактор делает необходимым поиск альтернативных точек воздействия на опухолевые клетки. Эрдафитиниб является ингибитором 4 изоформ рецепторов семейства FGFR. Во 2 фазе клинического исследования пациентам, резистентным к химио- и иммунотерапии, при наличии мутации FGFR3/FGFR2 назначался эрдафитиниб. Частота объективных ответов составила 42%, в отдельных случаях длительность стабилизации процесса составляла более одного года [40]. Как было отмечено выше, применение атезолизумаба и пембролизумаба в первой линии у больных с метастатическим РМП увеличивает общую выживаемость при наличии гиперэкспрессии PD-L1. В настоящее время одобрено использование пембролизумаба во второй линии терапии метастатического РМП. Сейчас согласно клиническим рекомендациям профессиональных сообществ пембролизумаб рекомендован независимо от типа опухоли, если она имеет статус MSI-H, свидетельствующий о высокой частоте мутаций в геноме вследствие инактивации генов репарации неспаренных оснований. Проблема в том, что при РМП таких опухолей не более 1%, поэтому и критерий MSIH не имеет практического значения. Ожидается, что даже еще лучшим предиктором, чем MSI-Н, будет определяемая NGS высокая мутационная нагрузка, но эта гипотеза пока проверяется в ходе реализации научно-исследовательских проектов [41].

ЗАКЛЮЧЕНИЕ

Таким образом, можно выделить условно три сигнальных пути и около десяти генов, являющихся их компонентами, мутации в которых характерны для двух основных форм РМП: НМРМП и МИРМП. В совокупности с данными секвенирования опухолевых экзомов, экспрессионными и иммуногистохимическими профилями эти молекулярно-генетические характеристики позволили усовершенствовать классификацию РМП и привели к необходимости выделения новых молекулярных подтипов. Различные молекулярные подтипы РМП ассоциированы с прогнозом, общей выживаемостью, эффективностью химио- и таргетной терапии, в том числе, ингибиторами иммунных контрольных точек. Основной вопрос, который в связи с изложенным выше ставится сейчас перед прикладными генетическими и иммуногистохимическими исследованиями – в каком виде и в какой мере полученные результаты могут быть имплементированы в практическую онкоурологию? Некоторые молекулярно-генетические характеристики уже сейчас входят в состав диагностических и прогностических тест-систем (мутации FGFR3, TERT, ряд иммуногистохимических маркеров), но основной массив соматических мутаций и изменений в уровне экспрессии генов представляет собой пока лишь отправную точку для поиска новых таргетных препаратов, либо нуждается в дополнительной валидации в качестве потенциальных прогностических маркеров.

ЛИТЕРАТУРА

  1. Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). [Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой]. МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018, 250 с. [. Malignant tumors in Russia in 2017: morbidity and mortality. [Ed. by Kaprin A.D., Starinsky V.V., Petrova G.V.]. Hertzen Research Institute of Oncology – branch of the NMRC of Radiology 2018, 250 pp. (In Russ.)]
  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-24. doi: 10.3322/caac.21492.
  3. Comperat E, Larre S, Roupret M, Neuzillet Y, Pignot G, Quintens H, et al. Clinicopathological characteristics of urothelial bladder cancer in patients less than 40 years old. Virchows Arch 2015; 466(5):589-94. doi: 10.1007/s00428-015-1739-2.
  4. Burger M, Catto JW, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol 2013;63(2):234-41. doi: 10.1016/j.eururo.2012.07.033.
  5. Zhang X, Zhang Y. Bladder cancer and genetic mutations. Cell Biochem Biophys 2015;73(1):65-9. doi: 10.1007/s12013-015-0574-z.
  6. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 2017;171(3):540-56. doi: 10.1016/j.cell.2017.09.007.
  7. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013;499(7457):214-8. doi: 10.1038/ nature12213.
  8. Shi MJ, Meng XY, Lamy P, Banday AR, Yang J, Moreno-Vega A, et al. APOBEC-mediated mutagenesis as a likely cause of FGFR3 S249C mutation over-representation in bladder cancer. Eur Urol 2019;76(1):9-13. doi: 10.1016/j.eururo.2019.03.032.
  9. Apollo A, Ortenzi V, Scatena C, Zavaglia K, Aretini P, Lessi F, et al. Molecular characterization of low grade and high grade bladder cancer. PLoS One. 2019;14(1):e0210635. doi: 10.1371/journal.pone.0210635.
  10. Hafner C, Di Martino E, Pitt E, Stempfl T, Tomlinson D, Hartmann A, et al. FGFR3 mutation affects cell growth, apoptosis and attachment in keratinocytes. Exp Cell Res 2010;316(12):2008-16. doi: 10.1016/ j.yexcr.2010.04.021.
  11. Mikhaylenko DS, Alekseev BY, Zaletaev DV, Goncharova RI, Nemtsova MV. Structural alterations in human fibroblast growth factor receptors in carcinogenesis. Biochemistry (Mosc) 2018;83(8): 930-43. doi: 10.1134/ S0006297918080059.
  12. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 2016;530(7589):184-9. doi: 10.1038/nature16932.
  13. He S, Sharpless NE. Senescence in health and disease. Cell 2017;169(6):1000-11. doi: 10.1016/j.cell.2017.05.015.
  14. Downes MR, Weening B, van Rhijn BW, Have CL, Treurniet KM, van der Kwast TH. Analysis of papillary urothelial carcinomas of the bladder with grade heterogeneity: supportive evidence for an early role of CDKN2A deletions in the FGFR3 pathway. Histopathology 2017;70(2):281-9. doi: 10.1111/his.13063.
  15. Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A, et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 2008;453(7195): 662-6. doi: 10.1038/nature06892.
  16. Segovia C, Martinez-Fernandez M, Duenas M, Rubio C, Lopez-Calderon FF, Costa C, et al. Opposing roles of PIK3CA gene alterations to EZH2 signaling in non-muscle invasive bladder cancer. Oncotarget 2017;8(6):10531-42. doi: 10.18632/oncotarget.14453.
  17. Descotes F, Kara N, Decaussin-Petrucci M, Piaton E, Geiguer F, Rodriguez-Lafrasse C, et al. Non-invasive prediction of recurrence in bladder cancer by detecting somatic TERT promoter mutations in urine. Br J Cancer 2017;117(4):583-7. doi: 10.1038/bjc.2017.210.
  18. Allory Y, Beukers W, Sagrera A, Flandez M, Marques M, van der Keur KA, et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome. Eur Urol 2014;65(2):360-6. doi: 10.1016/ j.eururo.2013.08.052.
  19. Yin M, Grivas P, Emamekhoo H, Mendiratta P, Ali S, Hsu J, et al. ATM/RB1 mutations predict shorter overall survival in urothelial cancer. Oncotarget 2018;9(24):16891-8. doi: 10.18632/oncotarget.24738.
  20. Hurst CD, Knowles MA. Bladder cancer: Multi-omic profiling refines the molecular view. Nat Rev Clin Oncol 2018;15(4):203-4. doi: 10.1038/ nrclinonc.2017.195.
  21. Galsky MD. Bladder cancer in 2017: Advancing care through genomics and immune checkpoint blockade. Nat Rev Urol 2018;15(2): 71-2. doi: 10.1038/nrurol.2017.199.
  22. van Rhijn BW, van der Kwast TH, Liu L, Fleshner NE, Bostrom PJ, Vis AN, et al. The FGFR3 mutation is related to favorable pT1 bladder cancer. J Urol 2012; 187(1):310-4. doi: 10.1016/j.juro.2011.09.008.
  23. Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast T.H, Zwarthoff EC. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One 2010;5(11):e13821. doi: 10.1371/journal.pone.0013821.
  24. Kim PH, Cha EK, Sfakianos JP, Iyer G, Zabor EC, Scott SN, et al. Genomic predictors of survival in patients with high-grade urothelial carcinoma of the bladder. Eur Urol 2015;67(2):198-201. doi: 10.1016/ j.eururo.2014.06.050.
  25. Nordentoft I, Lamy P, Birkenkamp-Demtroder K, Shumansky K, Vang S, Hornshoj H, et al. Mutational context and diverse clonal development in early and late bladder cancer. Cell Rep 2014;7(5):1649-63. doi: 10.1016/j.celrep.2014.04.038.
  26. Van Batavia J, Yamany T, Molotkov A, Dan H, Mansukhani M, Batourina E, et al. Bladder cancers arise from distinct urothelial sub-populations. Nat Cell Biol 2014;16(10):982-91. doi: 10.1038/ncb3038.
  27. Glaser AP, Fantini D, Shilatifard A, Schaeffer EM, Meeks JJ. The evolving genomic landscape of urothelial carcinoma. Nat Rev Urol 2017;14(4):215-29. doi: 10.1038/nrurol.2017.11.
  28. Jung S, Wu C, Eslami Z, Tanguay S, Aprikian A, Kassouf W, et al. The role of immunohistochemistry in the diagnosis of flat urothelial lesions: a study using CK20, CK5/6, P53, Cd138, and Her2/Neu. Ann Diagn Pathol 2014;18(1):27-32. doi: 10.1016/j.anndiagpath.2013.10.006.
  29. Hedegaard J, Lamy P, Nordentoft I, Algaba F, Hoyer S, Ulhoi BP, et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 2016; 30(1):27-42. doi: 10.1016/j.ccell.2016.05.004.
  30. Lindgren D, Frigyesi A, Gudjonsson S, Sjodahl G, Hallden C, Chebil G, et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res 2010;70(9):3463-72. doi: 10.1158/0008-5472.CAN-09-4213.
  31. Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014;25(2):152-65. doi: 10.1016/j.ccr.2014.01.009.
  32. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016;387(10031):1909-20. doi: 10.1016/ S0140-6736(16)00561-4.
  33. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 2013;45(9):970-6. doi: 10.1038/ ng.2702.
  34. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer 2015;15(1):25-41. doi: 10.1038/nrc3817.
  35. Kim J, Akbani R, Creighton CJ, Lerner SP, Weinstein JN, Getz G, et al. Invasive bladder cancer: genomic insights and therapeutic promise. Clin Cancer Res 2015;21(20):4514-24. doi: 10.1158/1078-0432.CCR-14-1215.
  36. Powles T, Duran I, van der Heijden MS, Loriot Y, Vogelzang NJ, De Giorgi U, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018;391:748. doi: 10.1016/S0140-6736(17)33297-X.
  37. O'Donnell PH, Plimack ER, Bellmunt J, Berger R, Montgomery RB, Heath K, et al. Pembrolizumab (Pembro; MK-3475) for advanced urothelial cancer: Results of a phase IB study. J Clin Oncol 2015;33(7)suppl:296. doi: 10.1200/jco.2015.33.7_suppl.296.
  38. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 2017;376(11):1015-26. DOI: 10.1056/NEJMoa1613683.
  39. Kim YW, Yun SJ, Jeong P, Kim SK, Kim SY, Yan C, et al. The c-MET network as novel prognostic marker for predicting bladder cancer patients with an increased risk of developing aggressive disease. PLoS One 2015;10(7):e0134552. doi: 10.1371/journal.pone.0134552.
  40. News. Erdafitinib Efficacious in Bladder Cancer. Cancer Discov 2018;8(8):OF6. doi: 10.1158/2159-8290.CD-NB2018-085.
  41. Михайленко Д.С., Сергиенко С.А., Заборский И.Н., Сафиуллин К.Н., Серебряный С.А., Сафронова Н.Ю. и др. Роль молекулярно-генетических изменений в прогнозе эффективности адъювантной внутрипузырной терапии немышечно-инвазивного рака мочевого пузыря. Онкоурология 2018;14(4):124-38. doi: 10.17650/1726-9776- 2018-14-4-124-138. [Mikhaylenko D.S., Sergienko S.A., Zaborsky I.N., Saflullin K.N., Serebryany S.A., Safronova N.Y., Nemtsova M.V., Kaprin A.D., Alekseev B.Y. The role of molecular genetic alterations in sensitivity of the adjuvant intravesical therapy for non-muscle invasive bladder cancer. Onkourologiya = Cancer Urology 2018; 14(4):124-138. (In Russ.)]
Прикрепленный файл Размер
Скачать статью 1.22 МБ
Ключевые слова: подтипы рака мочевого пузыря, уротелиальная карцинома, мутация, экспрессия генов, полимеразная цепная реакция, секвенирование, таргетная терапия