Введение. В настоящее время существующие методы определения химического состава камня in vivo не обладают необходимой точностью. В связи с этим, разработка методов высокоточного определения химической природы мочевых камней с применением современных технологий является актуальной для современной урологии
Материалы и методы. 72 пациентам с МКБ, проходившим лечение в НИИ урологии и интервенционной радиологии им. Н.А. Лопаткина – филиал ФГБУ «НМИЦ радиологии» Минздрава России наряду с общеклиническими методами обследования выполняли определение химического состава мочевых камней при помощи инфракрасной спектроскопии. Мочевые камни классифицировали по преобладающему минеральному компоненту на 6 основных типов (кальций-оксалатные, мочекислые,кальций-фосфатные, магниево-аммониево-фосфатные, урат–амониевые и смешанные), а также определение стереотипа питанияпо 25 нутриентам при помощи электронной анкеты. Построение модели классификации выполняли с помощью инструментов современного комплекса методов Data mining – IBM SPSS Modeler 18.0 (IBM Corparation, USA)
Результаты. Использован набор данных, включающий результаты анкеты-стереотипа питания и анализа химического состава мочевых камней, на основании которого была построена модель,позволяющая высокоточно прогнозировать in vivo химический тип мочевых камней. Построенная модель машинного обучения (алгоритм С5.0) обладает высокой прогностической точностью (98,6-100%), специфичностью (98,2-100%) и чувствительностью (100% для основных типов камней и 75,0% – для смешанных),
Выводы. Разработанный метод определения химического состава мочевого камня in vivo по показателям стереотипа питания пациентов, имеет высокую специфичность, чувствительность и точность,что позволяет использовать данную прогностическую модель в клинической практике.
Прикрепленный файл | Размер |
---|---|
Скачать статью | 4.24 Мб |